Self-assembling Peptide Reduces Glial Scarring, Attenuates Posttraumatic Inflammation, and Promotes Neurite Outgrowth of Spinal Motor Neurons.

نویسندگان

  • Kei Ando
  • Shiro Imagama
  • Zenya Ito
  • Kazuyoshi Kobayashi
  • Tetsuro Hida
  • Hiroaki Nakashima
  • Kenyu Ito
  • Mikito Tsushima
  • Yoshimoto Ishikawa
  • Akiyuki Matsumoto
  • Koji Nishida
  • Yoshihiro Nishida
  • Naoki Ishiguro
چکیده

STUDY DESIGN Self-assembling peptide gel (SPG-178) provides new evidence for the role of a scaffold for treatment of the spinal cord through induction of neuroprotective factors. OBJECTIVE To verify the reproducibility of SPG-178 as scaffold after spinal cord injury, we examine the characteristics of SPG-178 and protective effect on neural cells in vitro and in vivo. SUMMARY OF BACKGROUND DATA The central nervous system extracellular matrix may play a role in maintenance of the neuronal network by inhibiting axonal growth and suppressing formation of additional inadequate synapses. In this study, we show increased expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and tropomyosin receptor kinase (TrkA and TrkB) in SPG-178-promoted neurite outgrowth of motor neurons in vitro, and decreased inflammation and glial scar with use of SPG-178 in vivo. METHODS We examined the effect of a self-assembling peptide, SPG-178, as a scaffold for neurite outgrowth of spinal motor neurons in vitro. An in vivo analysis was performed to evaluate if the SPG-178 scaffold attenuated or enhanced expression of various genes after spinal cord injury model rats. RESULTS Expression of NGF, BDNF, NT-4, TrkA, and TrkB increased in SPG-178-promoted neurite outgrowth of motor neurons in vitro. In vivo, SPG-178 increased expression of glial cell line-derived neurotrophic factor and NGF, and decreased glial scar. CONCLUSION This study provides new evidence for the role of SPG-178 as a scaffold in the spinal cord and suggests that this peptide is a neuroprotective factor that may serve as an alternative treatment for neuronal injuries. LEVEL OF EVIDENCE 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury.

The pathophysiology of spinal cord injury (SCI) involves post-traumatic inflammation and glial scarring which interfere with repair and recovery. Self-assembling peptides (SAPs) are molecules designed for tissue engineering. Here, we tested the performance of K2(QL)6K2 (QL6), a SAP that attenuates inflammation and glial scarring, and facilitates functional recovery. We injected QL6 into the spi...

متن کامل

Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.

Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules a...

متن کامل

Glial scar expression of CHL1, the close homolog of the adhesion molecule L1, limits recovery after spinal cord injury.

The Ig superfamily adhesion molecule CHL1, the close homolog of the adhesion molecule L1, promotes neurite outgrowth, neuronal migration, and survival in vitro. We tested whether CHL1, similar to its close homolog L1, has a beneficial impact on recovery from spinal cord injury using adult CHL1-deficient (CHL1-/-) mice and wild-type (CHL1+/+) littermates. In contrast to our hypothesis, we found ...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes.

Oligomannosidic glycans play important roles in nervous system development and function. By performing a phage display screening with oligomannose-specific antibodies, we identified an oligomannose-mimicking peptide that was functionally active in modulating neurite outgrowth and neuron-astrocyte adhesion. Using the oligomannose-mimicking peptide in crosslinking experiments, synapsin I was iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spine

دوره 41 20  شماره 

صفحات  -

تاریخ انتشار 2016